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The interaction between a wave packet of small-amplitude short internal waves, and 
a finite-amplitude inertial wavc, field is described to second order in the short-wave 
amplitude. The discussion is based on the principle of wave action conservation and 
the equations for the wave-induced Lagrangian mean flow. It is demonstrated that 
as the short internal waves propagate through the inertial wave field they generate 
a wave-induced train of trailing inertial waves. The contribution of this wave-induced 
mean flow to the total energy balance is described. The results obtained here 
complement the finding of Broutman & Young (1986) that the short internal waves 
undergo a net change in energy after their encounter with the inertial wave field. 

1. Introduction 
The interaction between short and long waves is a topic of considerable interest 

and relevance to many branches of fluid mechanics. One technique for studying this 
interaction is the recently developed theory of wave-mean flow interaction, which in 
the fluid mechanics context, began with the pioneering work of Whitham (1965, 
1970) and Bretherton &, Garrett (1968), and culminated in the generalized 
Lagrangian-mean theory of Andrews & McIntyre (1978a, b )  ; for a recent review see 
Grimshaw (1984). The key concept here is the notion of an averaging operator, which 
typically describes averages over either a short wave period or wavelength, and is 
used to distinguish between the short waves and the mean flow (i.e. the long waves). 
The effect of the mean flow on the waves is then described by the equation for 
conservation of wave action, while the effect of the waves on the mean flow is best 
described by the momentum equation for the Lagrangian mean flow in which the 
wave-induced forcing terms can be described either by the radiation stress tensor, or 
by the wave pseudomomentum. The explicit, detailed formulation can be found in 
Andrews & Mclntyre (1978a, b ) ,  or Grimshaw (1984). 

In  this paper we propose to apply these ideas to the interaction between internal 
waves and inertial waves in the ocean. Thus the short-wave field is chosen to be a 
wave packet of small-amplitude internal waves, and the mean flow. or long-wave 
field, consists of finite-amplitude inertial waves. Our motivation for this study is the 
recent calculations by Broutman & Young (1986) of the trajectories of a wave packet 
of small-amplitude short internal waves which propagate vertically through the 
refracting current of a localized packet of large-scale inertial waves. Using ray theory 
for linearized waves they were able to calculate the net changes in frequency and 
vertical wavenumber of the short internal waves due to their encounter with the 
inertial wave field. In one of the more unexpected results, they found that there was 
a systematic tendency for the short internal waves to emerge from the inertial wave 
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field with an increased frequency and decreased vertical wavenumber, contrary to  
the predictions of the induced diffusion approximation of weak interaction theory. 
Using the principle of wave action conservation they inferred that there was then a 
net increase in short-wave energy, which had been extracted from the inertial wave 
field. This process does not depend in any way on wave dissipation, and there would 
seem to be considerable practical as well as theoretical interest in studying i t  more 
closely, since i t  could operate effectively when observed mixing rates are low, as they 
typically are away from oceanic boundaries and the surface mixed layer. 

Broutman & Young (1986) used the principle of wave action conservation to 
deduce changes in short-wave energy from their calculated changes in short-wave 
frequency. Although this is adequate as far as the short-wave field is concerned, it 
does not explain how the mean flow field supplies this energy change. This can only 
be elucidated by considering the wave-induced mean flow, and it is this aspect we 
address in this paper. If a is the amplitude of the short waves, we calculate the 
O ( l ~ 1 ~ )  wave-induced mean flow, and consider the O(laI2) total energy balance. Using 
averages over the horizontal wavelength of the short waves, which is assumed to 
remain constant throughout the interaction, we shall show that as the short internal 
waves pass through the inertial wave field, they excite an O(laI2) wave-induced train 
of inertial waves which has a phase velocity different from the original, pre-existing 
inertial waves. After the short internal waves have passed through the inertial wave 
field, this trailing wave-induced inertial wavetrain remains behind, and, together 
with the original inertial wave field, contributes to the O(laI2) total energy balance. 
This O(laI2) change in the mean flow field exactly balances the O(laI2) change in the 
short-wave energy. In  $2 we describe the formulation of the wave action equation 
and the wave-induced mean flow equation in the present context, and in $ 3  we 
present our results. 

Before proceeding to our discussion it is pertinent to mention two related studies. 
Andrews (1980) describes the mean motion induced by vertically propagating short 
internal-inertial waves, which are generated by a horizontal corrugated boundary 
which propagates horizontally. His study differs from ours in two important 
respects. First, the short waves are propagating into a medium at  rest (i.e. there is 
no basic mean flow), and secondly, the wave-induced mean flow field is supported by 
a horizontal pressure gradient (in the direction transverse to the moving boundary). 
I n  the case we shall discuss there are no horizontal mean pressure gradients as we 
assume that the short-wave field is homogeneous and periodic in both horizontal 
directions. Hence the original three-dimensional problem is effectively reduced to one 
in which the significant wave and mean field variables vary only with respect to the 
vertical coordinate and the time. Hasselmann ( 1970) calculated the wave-induced 
mean flow due to standing internal-inertial waves in the ocean (i.e. the short-wave 
field has a modal representation in the vertical, and propagates only in the horizontal 
direction). Like the case considered here, he found that for horizontally homogeneous 
conditions, the wave-induced mean flow is an inertial wave, which is, however, a 
standing wave in his formulation. There are, of course, a number of calculations of 
wave-induced mean flows excited by internal waves, in a context where the influence 
of the earth’s rotation is ignored (see, for instance, Grimshaw 1984). 
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2. Formulation 

typical field variable such as the vertical particle displacement is described by 
The wave packet is defined by an amplitude a ( x ,  t )  and a phase 8 ( x ,  t )  such that a 

(2.1) Re [a(x ,  t )  exp {id(x, t ) } ] .  

W = - O t ,  K = VO, 

The local frequency w ( x ,  t )  and wavenumber vector K ( X ,  t )  are then defined by 

(2.2) 

and satisfy the local dispersion relation for internal gravity waves. For an inviscid, 
incompressible fluid this is 

( 2 . 3 ~ )  

where W = W - K H - U o .  (2.3b) 

Here K~ = lxHl where K~ is the horizontal component of K, m is the vertical 
component of K ,  N ( z )  is the buoyancy frequency, f is the constant inertial frequency 
and u, is the basic horizontal velocity field. The amplitude a, frequency w and 
wavenumber vector K are slowly varying functions of x ,  t ,  and in contrast the phase 
8 is a rapidly varying function. The dispersion relation (2.3a) can be regarded as a 
partial differential equation for the phase 8. Alternatively we can eliminate 6 from 
(2.2) to obtain the equations 

K t + V W  = 0. (2.4) 

The amplitude is determined from the equation for the conservation of wave action 
(Grimshaw 1975) 

A,+V*((u ,+  V ) A )  = 0, (2.5a) 

where v = VKd, (2.5b) 

A = Ed-l, ( 2 . 5 ~ )  

and (2.5d) 

Here V is the intrinsic group velocity, A is the wave action density, E is the wave 
energy density, and po(z) is the basic density field. 

Mean flow quantities are denoted by an overbar, which here denotes a Lagrangian 
average and is obtained by averaging over the phase 0. In  the application to follow, 
the horizontal wavenumber vector K~ will be constant, and the averaging operation 
is then equivalent to averaging over a horizontal wavelength. The wave-induced 
Lagrangian mean flow ii is given by (Grimshaw 1975, 1984; Andrews & McIntyre 
1978a) 

where R is the radiation stress tensor, p is the Lagrangian mean pressure and p" is a 
mean density which satisfies the kinematic equation 
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The mean-flow equations are closed by the incompressibility condition which here 
takes the form, 

d J  - 

dt 
- - t J V . i i =  0; 

where J is the Jacobian of the mapping from a Lagrangian field point to an Eulerian 
field point, and is a mean quantity (i.e. J = J) .  Here the convective derivative is 
given by 

d a  
- = -+u.v, 
dt at 

so that the wave-induced forcing terms are accounted for by the radiation stress 
tensor R and J. R is O ( l ~ 1 ~ ) ,  and its dominant term is VKA ; the remaining terms are 
either diagonal terms which contribute an O(laI2) correction to the mean pressure, or 
terms which contribute an O(laI2) correction to the mean density p". Also Jequals  1 
plus an O(laI2) slowly varying correction term which can be ignored in the sequel. 

An alternative and equivalent formulation of the mean-flow equation3 is one in 
which the wave-induced forcing terms involve the pseudomomentum (or 
quasimomentum) (Grimshaw 1975 ; Andrews & McIntyre 1 9 7 8 ~ ) .  For an inviscid, 
incompressible fluid, this is given by 

where p is the Lagrangian mean density, and satisfies the equation 

= 0. * 
dt 

(2.10) 

(2.11) 

The equations are again closed by (2.8), and we note that p" = j5 The wave-induced 
forcing terms are now the pseudomomentum 

P = KA,  (2.12) 

and Q which is an O ( l ~ 1 ~ )  quantity and provides O(laI2) corrections to the mean 
pressure fj and the mean density p. It is given by 

Q = $v2lal2. (2.13) 

The Eulerian mean velocity is iiE = ii-iis where iis is the Stokes velocity, given by 
(Grimshaw 1975) 

(2.14) 

iis is O ( l ~ 1 ~ ) ,  but since the wave packet is slowly varying is generally smaller than u. 
To the order considered it is also non-divergent, and since uE is non-divergent, this 
confirms that we can effectively put J =  1 in (2.8). Note that iis bears no simple 
relationship to the pseudomomentum, such as the simple equality which sometimes 
holds for irrotational flows (see Andrews & McIntyre 1978a for further discussion on 
this point). 

We now restrict attention to the case when all wave variables (i.e. w ,  K and a)  and 
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all mean-flow variables are functions of z , t  alone. First we observe that the basic 
horizontal velocity field u,(z, t )  is then given by 

u,, +fk x u, = 0. (2.15) 

The solution of this equation is an inertial wave packet, given by 

u,+iv, = F ( z )  exp -if t-- , i ( 31 (2.16) 

where (u,,~,) are the (x,y)-components respectively of u,. The constant c is the 
vertical phase speed of the inertial wave, and F ( z )  is an amplitude envelope which 
may be specified arbitrarily. Equation (2.4) now implies that uH is a constant ; note 
that with no loss of generality we may put uH = ( k , O )  so that the x-axis is aligned 
with the horizontal component of the wavenumber vector of the wave field. Equation 
(2.4) reduces to 

rn, + 0, = 0, (2.17) 

where w = w(m; z , t )  is defined by (2.3a, b). This equation can be solved by ray 
methods, and some typical solutions are described by Broutman (1984) and 
Broutman & Young (1986). The wave action equation reduces to 

A , + ( W A ) ,  = 0, (2.18a) 

where (2.18b) 

Here W is the vertical group velocity. Once m has been found from (2.17), this 
equation is readily solved by ray methods. 

The forcing terms in the mean flow equations, or (2.10), are now known. We 
simplify these equations by putting 

u = u,+u2, (2.19) 

assuming that u2 is O(laI2), and retaining only O(laI2) terms. We find that 

p , { ~ , ,  + f k  x u2) = K~ A,.  (2.20) 

If we let (a2, u2) be the (x, y)-components of u2, and (k, 1) are likewise the components 
of uH, then the solution of (2.20) is 

po(a2+iu2) = (k+il) U ,  (2.21 a )  

where u = l:mA.(s,z) exp{-if(t-s)}ds. (2.21 b) 

Here we are assuming that at each level z, as t --f - 00, no waves are present, and 
hence there is no wave-induced mean flow as t +  - co. Further (2.21b) can be 
expressed in the form 

u = A ( t , z ) + 0 ,  (2.22 a )  

where 0 = - i f r  A ( s , z )  exp{-if(t-s))ds. (2.22b) 

The first term in ( 2 . 2 2 ~ )  represents an instantaneous wave-induced mean flow u,A, 

-m 
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equal to the wave pseudomomentum, which is associated locally with the wave 
packet. The second term 0 describes a train of forced inertial waves. Explicit 
illustrations and more detailed analysis will be taken up in 93. 

Next we derive the total energy equation for the wave-induced components of the 
flow. First, using (2.5a, c )  it may be shown that 

(2.23) 

where we recall that E (equation ( 2 . 5 d ) )  is the wave energy density. Note that the last 
term in (2.23) is the product of the radiation stress tensor with the basic flow velocity 
gradient, and describes the transfer of energy between the waves and the mean flow. 
The O(la1') term in the total energy is 

& = E+pouo.n,. (2.24) 

Using this definition, (2.15), (2.20) and (2.23), it may be shown that 

&, + (wWA), = 0. (2.25) 

Hence the total energy is conserved, and the vertical flux of the total energy is w WA. 
Next we note that 

po~o.tZ2 = ~ H * u o A ( t , z ) +  ~ K X U ~ ' K H A ( S , Z ) ~ ~ .  (2.26) 

From (2.24) we see that pa uo*ii2 is the O(la1') contribution of the wave-induced mean 
flow to the total energy. Interestingly the integrand of the second term is the product 
of the Coriolis term in the basic flow with the wave pseudomomentum rcHA. Further, 
using ( 2 . 5 ~ )  and (2.26), we see that (2.24) becomes 

s', 

where 

fk x A(s, X )  ds, 

d = @A. 

(2.27a) 

f2.27b) 

The first term in (2.27 a )  is 6, here equal to the pseudoenergy (Andrews & McIntyre 
1978b, or Grimshaw 1984), and represents a local term associated with the 
wave packet. The second term is the contribution of the train of forced inertial waves, 
and is non-local. Finally we present the equation for the pseudoenergy itself. From 
(2.17) and (2.18a) this is 

6t+(w6)Z+6wICH.uot = 0. (2.28) 

Note that d is conserved only when the basic flow is time-independent, which for the 
present case requires that f = 0 (see (2.16)). Also note that the vertical flux of total 
energy is here equal to W 6 ,  which is just the vertical flux of pseudoenergy. 

3. Results 
The process of determining the wave-induced mean flow has been reduced to 

solving the following sequence of equations. First (2.17) is combined with the 
dispersion relation (2.3a, b )  to determine w ,  m and hence the vertical group velocity 
W .  Then (2.18a) is solved to determine the wave action density A.  Finally the wave- 
induced mean flow uz is evaluated from (2.21 a ) ,  by evaluating the expression (2.22a) 
for U .  For simplicity, we shall suppose that the buoyancy frequency N is a constant. 
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We proceed to illustrate the general theory by considering four cases of increasing 
complexity. 

3.1. Non-rotating (f = 0) 
Although this case is well known (see, for instance, the review by Grimshaw 1984), 
we present i t  here for completeness. With f = 0 it follows from (2.15) that u, = uo(z) 
is independent o f t .  Further 0 (equation (2.22 b ) )  is zero, and the wave-induced mean 
flow pou2 is here just equal to K ~ A ,  the wave pseudomomentum, which is always 
locally associated with the wave packet. Further, from ( 2 . 2 7 ~ )  we see that the total 
energy is just the pseudoenergy wA. The essential features of this case are captured 
by considering the solution of (2.17) for which w =oo, a constant. Then the 
dispersion relation (2.3u, b )  determines m = m(z) from the equation 

G(m)+K,.uo(z)  = 0,. (3.1) 

The vertical group velocity W = W ( z )  can then also be found, and the solution of the 
wave action equation ( 2 . 1 8 ~ ~ )  is given by 

WA = a(t-$(z)) ,  ( 3 . 2 ~ )  

where $ ( z )  = W-ldz. (3.2b) 
J 

The equation t = $ ( z )  describes the ray trajectories. Note that 

Adz = constant, (3.3) f 
where the integral is taken over the wave packet. This result is readily obtained 
directly from (2.18a), and in this instance can also be attributed to total energy 
conservation (see (2.25)). It shows that the wave packet length varies inversely as the 
wave action density. However, the corresponding result for the wave energy density 
is 

(3.4) 

and the right-hand side describes the interaction of the wave packet with the mean 
flow. Indeed the change in kinetic energy of the mean flow due to the waves is 

and (3.5) 

Of course, the sum of (3.4) and (3.5) is just an expression of the conservation of total 
energy (see (2.25)). 

Two scenarios can now be identified. Suppose, without loss of generality that 
W > 0 and K ~ .  u,, > 0. If 4 > 0, m < 0 and the interaction is of the critical level type, 
since as the wave propagates upwards, 4 decreases towards zero, Iml increases 
towards infinity and W decreases. Eventually the wave packet is absorbed a t  the 
critical level (defined by G = 0). As the wave packet propagates upwards i t  loses 
energy to the mean flow (see (3.4) and (3.5)). Alternatively 4 < O,m > 0 and the 
interaction is of the turning-point type, since as the wave propagates upwards, 4 
increases towards N and Iml decreases towards zero. Eventually the wave packet is 
reflected at the turning point, 161 = N .  As the wave propagates upwards it gains 
energy from the mean flow (see (3.4) and (3.5)). 
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3.2. Zero basic $ow (u, = 0) 
In this case F = 0 in (2.16), but we shall assume that f + 0. The essential features of 
this case can be exhibited by considering the solution of (2.15) for which m (and hence 
K) and w are constants, satisfying the dispersion relation ( 2 . 3 ~ ) .  The vertical group 
velocity W is then also a constant, and the solution of the wave action equation 
is 

which describes a wave packet. The wave-induced mean flow is given by (2.21a, b )  
and (2.22a) where the non-local term 0 is given by 

A = P( t -  w-'z), (3.6) 

r? = - if exp ( -  if^) P(u) exp (ifu) du, (3.7a) 

where T = t -  W-lZ. (3.7b) 

Clearly ( 3 . 7 ~ )  describes a train of forced inertial waves, whose vertical phase speed 
is W. These forced inertial waves are generated upon arrival of the wave packet (i.e. 
0 + 0 as t + - m), but remain after the wave packet has passed, since, although now 
free inertial waves, they have zero vertical group velocity. Indeed 

o+ -ifexp(-ifT) P(u) exp(ifu)du, as t+m, I:* 
where we are implicitly assuming that the wave packet has finite extent. Note that, 
a t  the point of initiation, the forced inertial waves are in out of phase with the 
wave packet. 

3.3. Periodic inertial wave 
In this case we shall suppose that F in (2.16) is a constant, F = F, say, so that the 
basic inertial wave is a periodic wave, with phase speed c .  It is then appropriate to 
seek a solution of (2.4) for which w and m are functions only of 

z/ = z-Ct, (3.9) 

and hence are steady in a frame of reference moving with the inertial wave. This case 
has been discussed in detail by Broutman & Young (1986), although we shall repeat 
the essential results here for completeness. The solution of (2.4) is then 

w' = w-mc = cj+k,.u,-mc = wh, (3.10) 

where wh is a constant. This relation, together with the local dispersion relation 
(2.3a), then defines m = m(z'), and hence the vertical group velocity W = W(z'). Let 
us consider the case of greatest oceanographic interest when c > 0 and w > 0. The 
inertial wave packet has upward phase propagation, but downward group velocity, 
while the internal waves have downward phase propagation but upward group 
velocity. For the internal waves W > 0 requires that hm < 0, where we are assuming 
that N 2  > f '. The graph of 6 - mc as a function of m is shown in figure 1.  There are 
two cases to consider depending on whether c 2 W,, where W, is the maximum value 
of the group velocity, and is defined by 

where (3.11b) 
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FIGURE 1 .  The graph of G-mc as a function of m. Note that each curve has slope W = W-c and 
each asymptotes to the (dashed) line -mc. In  (a) c = 1.2WM, so there are no turning points. In  ( b )  
c = 0.5WM, and the turning points (where W' = 0) are marked by fm,,,.  As c+O, the high- 
frequency low-wavenumber turning point m2 approaches zero. For example, (c) shows this case for 
the smaller value of c = 0.07WM, closer to the parameter range considered by Broutman & Young 
(1986). In  all graphs the vertical axis is non-dimensionalized by N ,  and the horizontal axis by K ~ .  

The computations are made with N / f  = 75. 

Note that for N 2  b f ', m& z +K& and W, % 2 N / 3  4 3 ~ ~ .  For c > W,, the graph of 
4 - mc has the shape shown in figure 1 ( a )  and has no turning points, since the relative 
group velocity W' = W - c  < 0 for all m. It follows that m is a single-valued function 
of K ~ - u ~ ( x ' )  and the ray paths contain no caustics. In  this quasi-steady case the ray 
path is periodic, due to the periodic nature of uo (see (2.16)). For c < W, the graph 
of (2-mc has the shape shown in figures 1 ( b )  and 1 ( c )  and has two turning points 
( f ml,J on each branch, where W' = 0. Depending on the value of KH- u,(z') it is now 
possible for m to be multi-valued, and the ray paths may contain caustics whenever 
W' = 0. The ray paths are again periodic. Note that the lower (upper) branch is used 
when m > O( < 0). We also note that in the mid-frequency approximation discussed 
by Broutman & Young (1986) m2 % mh and c 4 W, so that only the case of figure 
1 ( c )  applies, and caustics are generated only by the larger turning point lml = m,. 
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W’A = y(t-  ?+b(z’)), (3.12 a )  

where I&’) = (W‘)-l dz’ (3.12 b )  

The equation t = ?+b(z’) describes the ray paths. Note that, as in $3.1 ,  the result (3 .3)  
again holds. The solution ( 3 . 1 3 ~ )  fails a t  caustics where U” tends to zero as the square 
root of the distance from the caustic. This singularity can be removed using Airy 
function approximations (Broutman 1986). The wave-induced flow is now given by 
(2.21a, b)  and (2 .22a,  b )  where here the non-local term 0 is given by 

As in $3.2,  (3 .13)  describes a train of forced inertial waves which are generated upon 
arrival of the wave packet (i.e. 0 - 0  as 2‘’ a), but remain after the wave packet 
has passed, since 

where 

( 3 . 1 4 ~ )  

(3.14b)  

Comparing ( 3 . 1 4 ~ )  with (2.16) we see that (3 .14a)  describes an inertial wave, 
although it cannot necessarily be deduced that the vertical phase speed is c ,  since, as 
the case of $3.2 shows, the phase of G(z)  in general contributes to the vertical phase 
speed. Indeed, if el is the vertical phase speed, then 

(3 .15)  

Note that although the integrand of G ( z )  (equation (3 .14b))  contains a singularity 
where W‘ vanishes, the singularity is of the square root kind, and integrable, so that 
G(z)  is finite. 

The energetics of the interaction of the wave packet with the mean flow can either 
be succinctly described by ( 3 . 3 ) ,  or by (2 .25)  for total energy conservation. However, 
the non-local nature of ii, together with the periodic and non-local nature of u,, 
prevent us from obtaining a local result for the total energy analogous to (3 .3)  for the 
wave action density, since global integrals of p,u, . i~ ,  (see (2.24)) are divergent. The 
energetics of the interaction between an internal wave packet and an inertial wave 
is best discussed within the context of $3.4. 

3.4. Inertial wave packet 

In  this case we shall suppose that F ( z )  in (2 .16)  has finite extent (i.e. F is zero for IzI 
sufficiently large), and hence (2 .16)  describes an inertial wave packet. The internal 
wave packet, also of finite extent, propagates through the inertial wave packet, 
passing from one uniform region where u,, _= 0 to another, The situation is described 
schematically in figure 2 .  In  the uniform region the internal wave packet is described 
in $3.2,  and has constant values of m and w ,  satisfying the dispersion relation ( 2 . 3 a ) ;  
note that when u, = 0 , h  = w .  We let mb and wb denote the values of m and w before 
the internal wave ray encounters the inertial wave packet, and m ,  and w, be the 
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i i  

FIGURE 2.  A schematic plot of the trajectory of the internal wave packet as it propagates through 
the inertial wave packet. The shaded region denotes the vertical extent of the inertial wave packet, 
and the two rays shown mark the outermost edges of the internal wave packet. 

corresponding values after the encounter. The values mb and wb can be regarded as 
the same constants for all the internal wave rays which make up the internal wave 
packet, but ma and w, in general depend on which ray is being considered. Broutman 
& Young (1986) have reported typical ray calculations, with parameter values in the 
mid-frequency range for which m2 9 m& z i ~ &  and c + W,. In  this case the ray 
trajectories pass through a number of caustics located within the inertial wave 
packet where W = c ,  W’ = 0 and Iml = m, (see figure 1 (b ,  c ) ) .  Of course, here m varies 
with both x and t as the internal wave ray passes through the inertial wave, although 
some progress can be made in understanding the situation by supposing that B(z )  in 
(2.16) is a slowly varying function relative to the phase (i.e. IF’(z)/F(z)l 4 f / c ) ,  and 
hence w’ (3.10) is also a slowly varying function. Within this approximation ma and 
wa are approximately independent of the particular ray being considered. An 
alternative approximation which leads to the same result is to assume that the 
internal wave packet is narrow-banded. Broutman & Young (1986) have exploited 
the slowly varying approximation in analysing their numerical results for ray 
trajectories. They have shown that in general ma can be markedly different from 
mb, particularly when mb is substantially different from m,. They have also 
demonstrated that there is a tendency for lmal < Imbl and hence Iw,I > wbl, essentially 
because the internal wave spends more time within the inertial wave packet with 
Iml > m, and low group velocity (W < c or W’ < 0 ) ,  than with Iml < m, and large 
group velocity (W > c ,  or W‘ < 0). The change-over occurs a t  caustics (Iml = m, or 
W‘ = O ) ,  and the internal wave is more likely to escape from the inertial wave packet 
when it has a large group velocity. We shall not give further details as our main 
purpose here is to  explore the energetics associated with the change in wavenumber 
and frequency. 

The energetics of the interaction is described either by the wave action equation 
(2.18a), or equation (2.25) for total energy conservation. We shall examine both as 
they give complementary views of the energy exchange. First, from the wave action 
equation ( 2 . 1 8 ~ )  it again follows that (3.3) holds. We shall use the slowly varying 
approximation so that we may regard ma and w, as constant across the wave packet 
after i t  has emerged from the inertial wave. Then, recalling that the wave energy 
density E = GA and 6 = w when u, = 0 ,  it  follows that 

( f E d x ) b  N (3.16) 
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where the subscripts indicate the values before and after the internal wave 
encounters the inertial wave, and the integrals are taken over the internal wave 
packet. Thus the ratio w,/wb determines whether the internal wave packet gains or 
loses energy during its traverse of the inertial wave. Since wa/wb is usually greater 
than one, as explained above (see Broutman & Young 1986), it  follows that there is 
a tendency for the internal wave packet to gain energy. 

Next we observe from (2.25) for total energy conservation that 

d dz = constant. 

Using (2.24) it  follows that 

(3.17) 

(3.18) 

where we note that pouo.ii2, the O ( l ~ 1 ~ )  contribution of the wave-induced mean flow 
to the total energy, is given by (2.26), and is zero before the interaction but is non- 
zero afterwards due to the non-local nature of the wave-induced mean flow. This, of 
course, is given by (2.21a, b)  and (2 .22a,  b ) ,  and the non-local term 0 describes a 
train of forced inertial waves. Equation (3.18) shows that the change in energy of the 
internal wave packet is directly due to the wave-induced forced inertial waves, and 
the consequent change in the kinetic energy of the mean flow u,  which to O ( l ~ 1 ~ )  is 
given by the basic flow u, plus the wave-induced component ii2, and thus consists of 
the superposition of two systems of inertial waves. Next, using (2.22a, b)  and (2.26) 
it may be shown that 

(~ou, .uz)adz =-r -02 J;mjkxuo.~,Adtdz, 

The integration is over the intersection of the internal wave packet trajectory and 
the inertial wave packet (see figure 2 ) .  Note that although the ray paths may contain 
caustics where A is singular, the singularities are integrable. The expression (3.19) is 
not as useful as (3.16), as it is not immediately obvious how to determine the sign of 
(3.19). However, we can demonstrate that (3.18) is equivalent to (3.16) as follows. If 
a typical ray is given by z = z ( t ,  z,) where zo is a label for each ray (for instance, z ,  is 
the initial value of z on each ray so that z (0 ,  z,) = z,), then the solution of the wave 
action equation ( 2 . 1 8 ~ )  is 

(3.20) 

where A,(z,) is a constant on each ray, and hence can be evaluated as t+ - 00. Note 
that the result (3.3) can now be expressed in the form 

aZ 
a20 

A(z ,  t )  - = A,(z,), 

A dz = A,(z,) dz,, f f  (3.21) 
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from which (3.16) follows immediately. Next we change variables in (3.19) to zo and 
t ,  so that the right-hand side of (3.19) becomes 

But, (2.15) implies that 

(3.22) 

(3.23) 

where the left-hand side is the derivative of w along a ray. Thus (3.22) becomes 

(3.24) 

Then using the slowly varying approximation, in which w,, as well as wb, is constant 
across the wave packet, it follows that (3.24) becomes 

(3.25) 

where we have used the limit t + - co to evaluate the right-hand side of (3.21). With 
this result we see that (3.18) is equivalent to (3.16). 

To summarize, we have shown that as a small-amplitude internal wave packet 
propagates through a large-amplitude inertial wave field it excites a wave-induced 
mean flow which consists of two parts. One part is the wave pseudomomentum which 
is localized to the internal wave packet. The other part is not localized and is a wave- 
induced train of trailing inertial waves, which is distinct from the pre-existing 
inertial waves. Broutman & Young (1986) have demonstrated that after the internal 
wave packet has passed through the inertial wave field, there is a net change in 
internal wave energy. Here we have shown that this change in energy is accounted 
for by the wave-induced generation of trailing inertial waves. 

D. B. was supported for the duration of this work by the Australian Marine Science 
and Technology Grant Scheme, file No. 8311247. 
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